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Summary. A method of calculating transition moment and oscillator strength 
within the framework of the Fock space multi-reference coupled cluster method is 
described. Diagrammatic technique is used to obtain coupled cluster equations. 
The general form of equations for the transition moment between N-electron 
ground and excited states is obtained. MBPT analysis of the final equations is 
done. The excitation energies, dipole transition moments and oscillator strengths 
for the C H  + molecule are calculated. 
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1. Introduction 

Coupled cluster methods (CCM [1] have been established as very convenient tools 
for introducing electron correlation. Extensive applications of CCM have been 
made in recent years to the calculation of electron correlation energies. Broadly, 
CCM can be classified into two distinct categories: one based on a single determi- 
nantal reference function, the other based on a multi-configurational model space. 
Single-reference CCM have been used very successfully for closed-shell situations. 
However, it has been realized that for certain cases, particularly when quasidegen- 
eracy is involved, it is essential to start from a model space which consists of several 
configurations. The expanding literature [2-4] shows that both single- and multi- 
reference methods are taking leading positions among methods developed to 
describe the electron correlation effects. 

While most of the attention has been focused on the electron correlation 
contributions to the state energies or on the energy differences, there has been 
recent interest in applying CCM to the studies on static and dynamic properties of 
molecules. A systematic treatment of these properties in a framework of CCM was 
proposed by Monkhorst [5]. In this approach [5, 6], suitable for calculating static 
first- and second-order properties as well as dynamic response functions, an explicit 
dependence of the CC operator on the perturbation parameter (and time - when 
dynamic properties are considered) is assumed. Similar formalisms were also 
studied in Refs. [7-10]. Arponen [11] initiated a different CC approach to the 
static first-order properties by employing the variational principle; this approach 
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has been further developed by Pal [12]. We have to also mention a solution of the 
problem of analytical energy gradients [13] in the CC method and successful CC 
calculations of static properties of atomic and molecular systems performed by 
using a finite field perturbation approach [14]. Other attempts to apply the CC 
method to static electronic properties were due to Kummel [15], Mukherjee and 
co-workers [9, 16] and Geertsen and Oddershede [17]. Kummel [15] discussed 
a special form of the linked expression of expectation value. Mukherjee and 
co-workers extensively developed a linear-response approach. A CC-polarization 
propagator method was recently developed by Geertsen and Oddershede [17]. 
Noga and Urban [18] also studied one-electron properties in CC states. However 
most of the studies performed so far on the static properties have been based on 
a single reference function. From our experience on the CC studies of energies we 
expect that using a CC approach based on a multi-configurational model space for 
calculation of the open-shell system properties may also be essential. Such methods 
have been formulated by Pal [19] for response properties, and by Stolarczyk and 
Monkhorst [20] for expectation values and for transition properties. While the first 
one proposed by Pal is a kind of continuation of a response single-reference CC 
approach, Stolarczyk and Monkhorst developed a different idea. A characteristic 
feature of their method is that it enables to determine reduced density and 
transition matrices for the unperturbed system. Then the expectation values and 
the transition moments can easily be generated for any arbitrary perturbation 
operator. One should also mention a procedure used by Mfirtenson-Pendrill [21] 
for calculation of the expectation value of a perturbation operator between unper- 
turbed wave functions. Only the Mfirtenson-Pendrill method has found some 
applications till now, but even in this case the final equations are far from being 
suitable for routine calculations. 

Our attention has been focused on transition properties in the Fock space 
multi-reference coupled cluster (FSMRCC) approach. It is motivated by the fact 
that the FSMRCC method has been extensively applied in excitation energy 
calculations and the description of spectra would not be complete without transition 
moment or oscillator strength quantities. The paper is organized as follows. In the 
next section the FSMRCC theory [22, 26] is outlined. In Sect. 3 the method of 
Monkhorst and Stolarczyk [20] of evaluation of the first- and second-order static 
properties is applied to FSMRCC theory [22]. In order to give a more complete 
description of our approach the many-body perturbation theory (MBPT) analysis 
of FSMRCC equations and its diagrammatic representation is presented in Sect. 4. 
Finally, in Sect. 5 the theory is applied to evaluation of the excitation energies, 
transition moments and the oscillator strengths in CH +. The results are compared 
with other methods, including full configuration interaction (FCI). 

2. Theory 

The nonrelativistic Hamiltonian within Born-Oppenheimer approximation is 
given as 

H=~h(i)+ ~ _ , 1  (1) 
i i > j  rij 

where the one-electron operator is defined as 

h(/)= --½Vi2--~r~.A A. (2) 
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In the formalism of perturbation theory we assume the exact Hamiltonian H to be 
composed of two components: the zero-order H0 and the perturbation V: 

H = Ho + V. (3) 

In the Moller-Pleset type of perturbation theory, we define Ho as 

Ho = ~ f ( i ) ,  (4) 
i 

f(i) = h(i) + u(i), (5) 

fq~, = er~br (6) 

and H~o -- Eo~o with 4o - the Hartree-Fock antisymmetrized product of occu- 
pied spin orbitals (~br). Here u(i) is an effective one-electron operator. The pertur- 
bation operator then becomes 

V =  ~ _1 _ ~ u(i). (7) 
i> j l 'ij  

In order to develop a diagrammatic approach, it is convenient to work within 
a second-quantized formalism. The expressions for Ho and V then become 

Ho = ~ err+r, (8) 
r 

V = V 2 + V 1 ,  (9) 

V2 = 1 ~ (Pq II rs>p+ q +st, (10) 
4 pqrs 

Vx = - ~ (plulq>p+ q, (11) 
Pq 

or in the normal order 

H N  = H - -  <OolHI go>, (12) 

HN = Hg + VN, (13) 

H° = Z e,{r+r}, (14) 

VN= V N+ V N, (15) 

V N = ~ <plw -- ulq>{p+q}, (16) 
Pq 

V~ = ~ (pq II rs){p + q+ sr}, (17) 
Pq 

where the brackets { } indicate the normal order and HN,H °, V N are normal 
ordered operators corresponding to the operators in Eqs. (8-11). In our case 
(Hartree-Fock reference function q~o), the one-electron potential V~ N = 0. In the 
Fock space multi-reference coupled cluster theory we solve the Schr6dinger equa- 
tion of the form 

H N  (/tN = AEI7~I, (18) 

AE~ = E~ -- Eo (19) 

for several states I. The solution 

711 = g?~o = f2 ~ C~,k~1.k = f2tC~4)1 (20) 
k 
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is built from the multi-reference function ~/0 that is represented in a space of 
configurations {~b/}. The space of functions is constructed from a set of active 
particle (c~,fl, . . .)/hole (#,v . . . .  ) creation/annihilation operators acting on the 
ground state (GS) wave function ~0. From this point of view every state 7~t is 
characterized by its multi-reference (model) wave function ~o, expanded on the 
{~1} space, and can be referred to by notation ~p.h), where p refers to the number 
of electrons in the virtual space and h refers to the number of electrons removed 
from the occupied space of {(bo }. The relevant reference spaces for the GS (0, 0), IP 
(0, 1), EA (1, 0) and EE (1, 1) cases are as follows: 

~GS = ~0, 

I~)IP = {~} ~ 0 ,  

~EA = {~ ÷ } 05o, 

~EE = {~+~}~o ,  

(21) 

(22) 

(23) 
(24) 

where all active hole operators #, and particle operators c~ are considered. Then, we 
can write the solution to the Schr6dinger equation as 

~(o ,o )  = OT~Os, 

t//(0,1) = O~iT/Op, 

~/(1,0) = ~'~t//OA, 

}e(~,~) = O P °  E. 

(25) 

(261 
(27) 

(28) 

In this notation the GS is found in the solution of the (0,0) problem; ionization 
potentials (IP) in the (0, 1) problem; electron affinities (EA) in the (1, 0) problem and 
excitation energies (EE) in the (1, 1) problem. In the FSMRCC, Q is the wave 
universal operator. This means that the same g? solves all eigenvalue problems. 

f2 = {exp(r (°'°) + T (°'i) + r (i'°) + r (1'I)) + ..-}, (29) 
where 

T (°'°) = ~<a] Y~°'°)li>{a+i } 
i,a 

1 
+-~ Z <ablY(z°'°)lij>a{a+b+J i} + """ (30) 

i , j ,a,b 

a/i run over all unoccupied/occupied orbitals in #o. 

T (° ' l )= ~ <#IT]°'i)[ i > {#+i} 
i,# 

1 ~ <#b[T(2O,,)lij>A{#+b+ji} + "", (31) 
2 i,j,u,b 

<cl rll'°)l~>{c + ~} 

+ 

T t i ,  o) = 

+ 

T(1, i) = 

+ 

1 ~, <cdlT(21,o)lai>z{c+d+ia} + ... 
2 c,d,~t,i 

(#1T(1 i' l)l cO{# +c~} 

(32) 

1 
~ ~ @dlT(21'i)lcd>A{t~+d+ic~} + . . . ,  (33) 

i,d,~,a 
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the indices p, e are defined by the active holes and particles. From Eq. (18) and from 
the definition of the model space, inserting into the SchriSdinger equation, we have 

if we then define 

where 

is the projector onto the model space of k particles and l holes. Then, 

where AE~ is a diagonal matrix and Ct is an eigenvector which along with t2 define 
the wave function gJ~ or ~<k,0. If we now define 

where 

that is the projection operator over all function space not spanned by the model 
determinants, then projection by the Q-space the Bloch equation of the form 

will give us the multi-reference coupled cluster equations 

o r  

where ~j ~ {o<k'l}. The form of the Q-space set {~i} will vary depending on the 
sector of interest. By analyzing the ansatz (29) it follows that we can write the wave 
operator in the following form: 

Making use of Eq. (45) we find that the Bloch equation (42) goes over into 

where 

is a new effective Hamiltonian which upon diagonalization will give the energy 
difference, i.e. ionization energies, excitation energies, etc., and 

give us the new multi-reference coupled cluster equations. Equation (48) has been 
derived and used by other authors (see e.g. refs. [22], [32]). Also the advantage of 
s tor ing/ /has  been noted earlier [9, 22]. 
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The Bloch equation (46) is solved hierarchically, step by step, starting from the 
(0, 0) sector, using the fact that the higher valence quantities do not contribute in 
equations for lower valence cluster amplitudes. An advantage of the above formu- 
lation is tha t /7  has to be calculated only once. In practice, however, we only store 
the one and two body parts of /7  and calculate other parts directly. 

3. First- and second-order static properties in the FSMRCC method 

Let us assume that the set of eigenfunctions of H can be expressed as 

where operator 

is assumed to be unitary, 
A = OB 

A + A  = B+O+OB =1.  

(50) 

(51) 

The 12 operator is the CC wave operator of the exponential form, B is the operator 
which results from the multi-reference character of the model space and expresses 
the coefficients of the linear combination of function from this space. Let us assume 
that operator O is a Hermitian operator representing a certain external perturba- 
tion to our many-fermion system described by Hamiltonian H. Quantity 

o~ = <~e'l 0~ '>  (53) 
is for I = J called the expectation value of operator O, in a state 7 ~I, and for I # J, 
called the transition moment of O for states ~I  and ~s. Below, a few examples of 
system properties which can be expressed in terms of integrals O~ are given. 

Let us write the perturbed Hamiltonian for the system as 

H()~) = n + 20, (54) 

where 2 is a perturbation parameter. The Rayleigh-SchriSdinger perturbation 
theory applied to the ground state of H leads to the following expansion for an 
eigenvalue of H(2): 

E(2) = E ° + 2 E  1 + ,2tZE 2 + . - . ,  (55) 

where 
E ° = Eo, (56) 

E 1 O °s (57) = GS, 

IOSL2 (58) 
E 2 = -  E AE.r" 

J( ~ o) 

In Eqs. (56)-(58) Eo is the ground state energy, Oo °s is the expectation value of O 
in the eigenstate 7'os, O J is the transition moment of O for states 7'as and ~us, and 
A E s is an excitation energy 

AE s = E J -  Eo. (59) 

E ~1) and E ~2) correspond to first- and second-order properties of the system. In the 
approximation (52), the formula (53) becomes 

OIs = <d~IIA+ OArPj> 

= <q~I[A-IOAq~j> 

= <(B- ~)+~bllf2- ~Of2Bebj>. (60) 

(52) 
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In a FSMRCC procedure however the operator A is not a unitary one and is of the 
form (20) 

A' = OC (61) 

and the application of formula (60) cannot be so straightforward. It can be shown 
[20] however that even if the operator OC,¢I from Eqs. (20) is not a unitary one, 
after some manipulations the following expressions for the expectation value and 
the square of the transition moment absolute value are valid: 

O~ = (~I](OC~)- IO(OC,)~,), (62) 

IO512 = [<q}l I(OC,)- 10(OC~)4~j> [2. (63) 

It is worthwhile to note a close correspondence between Eq. (63) and the CC- 
response expression of Koch and Jorgensen [32]. 

If one defines the operator 

and the matrix element 

W = (f2-a O0)c (64) 

WJ = <~1112- lOO~s) (65) 
and chooses 

T, = g~(o,0), (66) 

~T./ar = ~.t(1, 1), (67) 

with the normal ordered perturbation 

ON = ~ <i[r[j) {i+j} (68) 
i,j 

as a one-electron dipole moment operator, which diagrammatically can be ex- 
pressed as 

ON 

then the transition moment between the ground state and excited states can be 
calculated from the expression 

IOq 2 = I<~olO- 1ON(OC~)q~s)[ 2 (69) 

in a matrix representation, where C s indicates the dth row of the matrix, 

]OJ[2 = W JCj (CJ ) - I  W j ,  (70) 

The matrix elements _W J and _Wj are 

-1-1- Ws = < ~ s [  WSl~Ee, o), (71) 

_Wj = <~EE, 01WjI ~Gs), (72) 

where WS(Ws) represents the connected part of (O-lO0)c  and can be divided into 
zero-, one-, two-particle operators 

W = Wo + W1 + W2 + ' . ' .  (73) 



264 M. Barysz 

In this application the highest particle operator considered is W2. To be able to 
get transition moment amplitudes W. one has to know the inverse of the wave 
operator I2. Since f2 is the normal ordered operator the inverse of it is difficult to 
find. To solve this problem one can multiply Eq. (64) by f2 and gets 

g2W = Of 2. (74) 

From the power series of the exponential form of the wave operator we have 

( 1 ) 
I + T +-~. .T*T + . T * T * T  + ... 

W = O  I + T + - ~ . . T * T + - ~ . T , T , T +  ... (75) 

and 

W 0 + 0 (  1 1 = T + ~ T * T + ~ . T * T * T +  ...) 

( 1  1 ) 
- T + N T * T + ~ T * T * T + . . .  W. (76) 

(The sign • in Eqs. (76) and (77) means that due to the normal order of the wave 
operator ~, there are not contractions between coupled cluster amplitudes.) To be 

÷ ~/ 

+ 

4.. 

Fig. 1. W~ ~ and W~'" transition 
moment amplitudes. MRCC 
amplitudes are depicted by full 
lines 
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Fig. 2. The intermediate transition moment amplitudes 14:1 and W2 (see also Fig. 1) 

able to get transition moment between two N-electron states (0,0) and (1,1) sectors 
we need W1 excitation and deexcitation amplitudes. From diagrammatic equations 
presented in Figs. 1 and 2 one can see that these amplitudes depend on other W1 
and W2 amplitudes. In consequence we get a set of linearly dependent equations 
which can be solved in an iterative way. Besides, in our approximations, 
i.e. W = Wo + W1 + W2, T = T1 + T2, the infinite expansions in Eqs. (75) and 
(76) terminate. 

One can see that to get transition moment amplitudes is not easy. The main 
reason is the presence of deexcitation amplitudes: T [1,1); T [1,2) and T ~2,1); T ~2, 2) 
and the necessity to perform calculations in a higher than (1,1) sector. 

4. FSMRCC theory for properties and MBPT analysis 

Transition moment is the first-order property due to the external perturbation O. 
The diagrammatic equations (Figs. 1 and 2) show it is calculated as a sum of 
diagrams which are products of the matrix elements of the perturbation O and 
MRCC amplitudes. These amplitudes have been calculated in SD approximation 
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and can be considered in a content of perturbation V [see Eq. (3)]. 

H(2) = Ho + 2V. (77) 

The conventional Fock space Bloch equation for the perturbed Hamiltonian can 
be written for all 2 as 

H(2)I'~(~.)P (k'l) = O(2)H(~}°(A)P (k''), (78) 

the universal wave operator Q(2) may be written as 

f2(2) = {exp(T(2)}. (79) 

For. a model space containing k active particles and l active holes T(2) may be 
expanded as a Taylor's series consisting of the derivatives that can destroy at most 
k active particles and I active holes. These derivatives have to be calculated for each 
active hole-particle sector for open-shell systems. In this notation, we follow 

T(~) ,r(o) ;tr~)l) + :2T(2) (~,,> = ~(~,,) + (80) , ,'~ ~ ( k , l )  ~- "'" . 

Being universal in nature, each of the terms T~)t) may be written in terms of the 
cluster operators of a lower number of hole-particle sectors. The effective Hamil- 
tonian H,rf corresponding to perturbed H(2) may also be written in terms of 
various order derivatives 

Heff(;~) rt(O) ~ L,(1) : 2 L-(2) = 11~rr + ~,l~:rr + -, ,~err + " " .  ( 81 )  

The projection of the Bloch equation to the model space and orthogonal space 
yields 

P(k't) H ( , ~ ) O ( 2 ) P  (k'O = .ro(k'l) u(k'l)g~"~ tr.)~ , (82) 

Q(k") H(A)O(;~)P (k'') = Q(k'Of2(A)H(~il)(Z)P (k''). (83) 

One can calculate the various derivatives of Hoff(2) in terms of the Fock space 
cluster operators and their derivatives. We will describe now how Eq. (43) may be 
solved in a manner that shows the connection between the MRCC and the different 
orders of the MBPT approaches. 

We start with the ground state, (0,0) sector, and solve Eq. (43) in an iterative 
manner, by performing an initial guess of s T (,b) X and { T] } and then inserting these l.~(ij) S 
values on the right-hand side into Eq. (43) to obtain an improved set of values of 

,T'(ab)'( -(u) ~ and {T]}. These are then inserted back to the right-hand side of Eq. (43) 
and again give us improved values of amplitudes, etc. As an initial guess of the 
cluster amplitudes we set those amplitudes that appear on the right-hand side of 
Eq. (43) equal to zero. The motivation for this choice is that the terms containing 
T on the right-hand side of Eq. (43) are assumed to be smaller than those on the 
left-hand side of this equation. Inserting these values of amplitudes into the CC 
expression for the total energy, we obtain the expression which is the result 
obtained in a second-order perturbation theory. A second iteration may be carried 
out by inserting into the right-hand side of Eq. (43) cluster amplitudes obtained in 
the first iteration. If we then neglect the terms that are quadratic in the T ampli- 
tudes, we obtain coupled cluster amplitudes that, when used to compute the energy, 
give the same algebraic expression as is obtained in the third-order MBPT. The 
iterative process carried out when determining the cluster amplitudes from Eq. (43) 
may be continued by inserting the cluster amplitudes from one iteration into the 
right-hand side of Eq. (43) to obtain the new amplitudes. The whole procedure is 
already very well known and a detailed description for single-reference CC had 
been given [31]. Similar analysis can be done for higher sectors. The pictures of this 
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study will be simpler if we start with/-t expressions. By means of T~'!0), the different 
orders of/-T x) can be derived [31]. Following the presented idea above the PT 
analysis can be done for (0,1), (1,0) and (1,1) sectors. 

It should be pointed out that the MRCC equations in SD approximation 
(similarly to the single-reference ones) are exact only till the second order of the 
perturbation V. The third- and the higher-order equations include T3 and T4 
amplitudes. 

Our attention in this paper has been focused on the transition moment between 
the N-electron ground (0,0) and excited (1,1) states. Zero-, first-, and second-order 
equations on transition moment amplitudes W dex and W~ x~, necessary to calculate 
transition moments and oscillator strengths, have been shown in Fig. 3. Zero-order 
amplitudes are expressed by one-electron integrals 

in Fig. 3a, b. First-order equations contain the first-order T (22' 2) amplitudes (Fig. 3, 
d2). These contributions are rather easy to calculate: 

The dashed lines in the diagrams represent HN integrals. Second-order equations 
(Fig. 3e, f) are slightly more difficult to get since besides the first-order T2 (1' 2) and 
T(2 2,1) amplitudes (e3) 

= t ; 6  
one need to calculate the second-order r(2 2'2) amplitudes. 

The equation for the second-order T(22' 2) amplitudes may be derived from Eq. 
(49). The formalism is more complicated now, since the equations include the 
unknown (0,2) and (2,0) amplitudes. Fortunately the first-order (0,2) and (2,0) 
amplitudes can be again expressed via simple integrals: 

. . . .  I 
One can extend this analysis for higher orders. Since we work in the SD approxi- 
mation, the third-order equations are not exact. Equations for the deexcitation 
W, aex amplitudes would contain the second-order (TI(1,1) and T2(2,2)) and the 
third-order (T~ °' '), T~ 1'°), T[ ~' 1) and T(21' t) amplitudes. They are not exact as long 
as they do not contain T3 amplitudes. If we would like to improve the results, then 
T3 amplitudes could be, for example, included in an approximate, noniterative way 
using SD amplitudes. 

In the present implementation we use the following approach: By the analogy 
to the single-reference CCSD method with TI °'°), and T(2 °'°), ( ~,/ , V V ) 
amplitudes we have taken into account r~°' o), r(2O, o), r ~o. ,), r ~1. o), r(2O. 1) T(21, o), 
T i  ~'" excitations and T[ 1''), T(22'2), ( - -~ - ,~ - " - -~  ) deexcitation amplitudes. In 
this way we get zero- to fourth- and higher-order expressions, but PT analysis 
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Zero Order: 

1st Order" 

o~; ~ ~ 8  ~ 
T2(1) 

T2(1) WI(O) 

d l  d2 

~ -7~ 

2nd Order : 

+ 

T1 (2) 

T1 (2) T2(2) W2 (1) 

' el e2 e3 

T2(2) W1 (o) W1 (1) 

_ ~ T2(1) 

W2 (1) Wl(O) 

Fig. 3. 
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4- 

- 

Fig. 3. Zero-, first-, and second-order 
equations for the amplitudes necessary to 
calculate the transition moments and 
oscillator strengths from the ground (0, 0) to 
the excited (1,1) states. One- and two-body 
parts of HN are represented by dashed lines, 
the active lines by double arrows and the non 
active by circles (see also Fig. 1) 

shows that  several diagrams are omitted. We have also seen that the equation can 
be improved, without too large a computat ional  effort, by including first-order 
amplitudes from higher sectors (0,2), (2,0), (1,2) and (2,1). Then one can get exact 
second-order transition moment ,  almost complete third-order (even without Ta) 
and a lot of higher-order terms not shown here. We will develop the method in this 
direction. 

5. Applications 

Here we present results for the C H  + molecule. Our attention is focused mainly on 
two quantities: transition moment  and oscillator strength in dipole representation. 
The oscillator strength in this representation is defined as 

• [transition moment[ 2 * excitation energy (84) 

and depends on excitation energies and transition moment.  The CH ÷ calculations 
have been carried out at an internuclear distance of 2.13713 a.u. and using the basis 
given in [25]. Fo r  carbon a tom a split valence basis set was used augmented with 
two diffuse s and p functions and one d polarization function. For  hydrogen the 2s 
basis set was augmented with one diffuse s function and one p polarization 
function. The basis set contains a total of 26 Gaussian orbitals. CH + has a ground 
state electronic configuration l~r22~23~r 2 and a large nondynamical correlation 
contribution originating from the l~r22a22r~ 2 configuration. Table 1 reports 
F S M R C C  and FCI  calculations of excitation energies from the CH + X 1 I2 + 
ground state to the lowest states of 1H symmetry and appropriate transition 
moments  and oscillator strengths. We also make a comparison to TDA, RPA and 
M C L R  calculations performed in the same basis set. The comparison with avail- 
able experimental results has been done too. The lowest state of 1 i / symmet ry  has 
an electronic configuration la22a23al  In  1 and excitation to this state has a domi- 
nant single replacement nature. Since the model space in the (1,1) sector of 
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Table 1. Excitation energies, transition moments and oscillator strengths with 
respect to ~27 + and IHx states in the dipole length approximation for the TDA, 
RPA, MCLR, FSMRCC and FCI excitations 

M. Barysz 

Method Exc i t a t i on  Transition Oscillator 
energy (eV) moment (a.u.) strength (a.u.) 

TDA a 2.926 0.441 0.014 
RPA b 2.650 0.331 0.007 
MCLR b 3.230 0.300 0.007 
FSCC 3.241 0.243 0.005 
FCI b 3.320 0.299 0.007 
Exp. 3.07 ~ --  (0.00566 -T- 0.0002) d 

TDA ~ 15.231 - 1.081 0.436 
RPA b 14.841 0.944 0.324 
MCLR b 14.197 0.799 0.222 
FSCC 15.005 0.700 0.180 
FCI b 14.127 0.767 0.214 

" Ref. [27] 
b Ref. [25] 
Ref. [28] 

"Ref. [29] 

FSMRCC has been created by single excited configurations too, one should expect 
good excitation energies. The agreement with FCI is very good. The energies 
obtained in a small active space are of the same quality as of the MCLR method 
and much better than those obtained in RPA and TDA calculations. Transition 
moment and oscillator strength, which are rather small quantities, are well repro- 
duced too. 

The second state of 1II symmetry is dominated by higher excited configura- 
tions. Then, it is not surprising that the FSMRCC method gives bad excitation 
energies. Similar behavior can be observed in RPA and TDA. However, the 
FSMRCC method, which is optimized for several states at the same time, gives 
much better transition moment and oscillator strength in comparison to others. It 
means that the quality of the wave function is not bad. The MCLR method gives 
better numbers but, again, rather a big model space has been used. 

Conclusions 

We have presented the method of calculating expectation values and transition 
moments within the framework of the Fock space coupled cluster method. We have 
shown the excitation energies, transition moments and dipole oscillator strengths 
for the CH ÷ molecule and have made a comparison with the TDA, RPA, MCLR 
and FCI  methods. If one realizes that the method describes several states at the 
same time, the agreement with FCI  is quite good. More advanced studies have been 
performed on the example of the 03 molecule [26] which confirmed the con- 
clusions. The final results are promising. Only the deexcitation amplitudes 
T~ 1'1) and T(22'2) have been calculated, but they both appear in considered 
N-electron states. We are aware of the fact that the results have to be improved and 
it will be a part of our next work. 
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We would like to emphasize that the transition moment amplitudes have been 
fast and well converged. Once the energy is given, the oscillator strength in fast 
calculations can be achieved. 
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